MAT123

Symmetry

Even/Odd Functions

A function is <u>even</u> if f(-x) = f(x) for all *x*-values in the domain

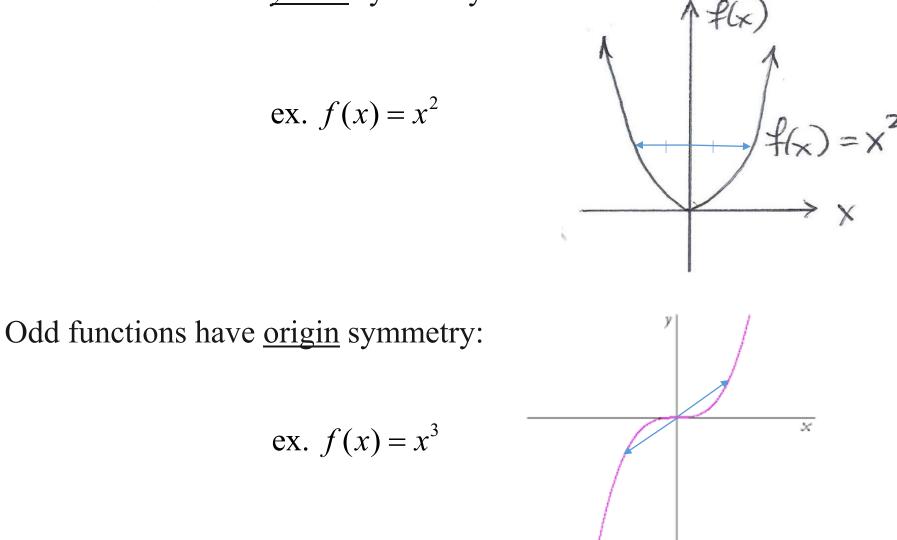
ex:
$$g(x) = x^4 - 3x^2$$

 $g(-x) = (-x)^4 - 3(-x)^2$
 $= x^4 - 3x^2 = g(x)$ since $g(-x) = g(x)$
 $g(x)$ is an even function

A function is <u>odd</u> if f(-x) = -f(x) for all *x*-values in the domain

ex :
$$h(x) = x^{3} - 6x$$

 $h(-x) = (-x)^{3} - 6(-x)$
 $= -x^{3} + 6x$ factor out negative
 $= -(x^{3} - 6x)$
 $= -h(x)$
 $(-x)^{3} = (-x)(-x)(-x)$
 $= -x^{3}$
 $= -x^{3}$
 $since h(-x) = -h(x)$
 $h(x)$ is an odd function


Example of neither:

 $f(x) = x^{2} + 2x + 1$ $f(-x) = x^{2} - 2x + 1 \neq f(x) \neq -f(x)$

f(x) is <u>neither</u> even nor odd

Even/Odd - Symmetry on a Graph

Even functions have <u>*y*-axis</u> symmetry:

